中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (6): 952-956.doi: 10.3969/j.issn.2095-4344.2017.06.023

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

同步辐射显微断层成像监测口腔骨植入材料置入体内后的生物相容性及定量分析:随机对照动物实验方案

孙莲莲,王志兴   

  1. 天津市第五中心医院口腔科,天津市  300450
  • 收稿日期:2017-01-16 出版日期:2017-02-28 发布日期:2017-03-16
  • 作者简介:孙莲莲,女,汉族,天津医科大学毕业,主治医师,主要从口腔医学研究。
  • 基金资助:

    天津市滨海新区卫生计生委科技项目重点支持项目(2015BWKZ001)

Biocompatibility and quantitative analysis of oral bone implant materials in vivo using synchrotron radiation-based micro-computed-tomography: study protocol for a
randomized controlled animal experiment

Sun Lian-lian, Wang Zhi-xing
  

  1. Department of Stomatology, Fifth Central Hospital of Tianjin, Tianjin 300450, China
  • Received:2017-01-16 Online:2017-02-28 Published:2017-03-16
  • About author:Sun Lian-lian, Attending physician, Department of Stomatology, Fifth Central Hospital of Tianjin, Tianjin 300450, China
  • Supported by:

    the Scientific Support Project of the Health and Family Planning Commission of Binhai New Zone in Tianjin, No. 2015BWKZ001

摘要:

文章快速阅读:

 

文题释义:
同步辐射显微断层成像技术(SR-μCT
):是基于同步辐射光源的X射线相位衬度成像技术(XPCI)与断层成像技术(CT)的完美结合。因SR-μCT的极高相位衬度分辨率,能分辨软组织内极细微的结构变化,极适宜于软组织成像;而其另一个大优点是极高的空间分辨率,达到了微米级甚至亚微米级(最高可达约0.3 μm),能实现对细胞的成像。SR-μCT可以在不用切片、染色的情况下,实现对组织内部细微结构的真实再现,这几个特点使同步辐射成像技术在医学、生物学、材料科学等领域具有重要的研究价值和应用前景。
口腔骨移植:创伤、肿瘤、感染、功能性萎缩、先天性疾病以及牙周炎等原因均能造成口腔内骨组织缺失,而目前骨缺损修复的主要方式是植骨或增加骨量即在缺损区充填骨替代材料。

背景:目前骨缺损修复的主要方式是在缺损区充填骨替代材料,为了解骨缺损修复效果,需深入了解骨替代材料植入后骨缺损微细结构改变。同步辐射显微断层成像技术(SR-μCT)可以在不用切片、染色的情况下,进行高衬度分辨率、高空间分辨率的显微三维成像,有极高的科研及临床应用价值。
目的:探讨在口腔医学检查中应用SR-μCT对骨结合微米级检查的可行性。
方法:实验为随机对照动物实验,在中国天津,天津市第五中心医院完成。取24只雄性新西兰大白兔制备下颌骨缺损模型,随机分为4组,分别在缺损区植入自体骨、Bio-oss骨粉、β-磷酸三钙骨粉,阴性对照组不植入任何材料。术后2,4,8周取材(包括缺损区及周围部分正常骨组织),行SR-μCT检查,之后制成组织切片行组织病理学检查,从多角度观察不同种类骨移植材料的骨修复情况。实验方案经天津市第五中心医院伦理委员会批准。新西兰大白兔的实验操作和取材遵循《关于善待实验动物的指导性意见》规定,并与美国国立卫生与健康研究院的指南一致。
结果与结论:实验证实了SR-μCT能在不破坏样品的情况下,完成对骨结合及新生骨微观的观察,得到骨体积、骨小梁数目及骨密度等的更准确的定量数据。因此,通过SR-μCT能全面分析骨植入材料置入体内后的生物相容性反应,深入了解不同种类骨移植材料在骨缺损处微米级结构改变,可为提高骨缺损愈合的效果提供实验依据。

关键词: 生物材料, 骨生物材料, 同步辐射显微断层成像, Bio-oss骨粉, β-磷酸三钙, 自体骨, 骨缺损, 微观结构, 生物相容性

Abstract:

BACKGROUND: At present, bone substitute filling is mainly used for bone defect repair. In order to understand the effect on bone defect repair, it is necessary to look into the microstructure changes of bone defects after bone substitute implantation. Synchrotron radiation-based micro-computed-tomography (SR-μCT) can be used to make high-resolution, high-resolution three-dimensional imaging without slicing and dyeing, and has high scientific and clinical value.
OBJECTIVE: To explore the feasibility of SR-μCT in micron-level bone osseointegration examination in oral medicine.
METHODS: This randomized controlled animal experiment was completed at the Fifth Central Hospital of Tianjin, Tianjin, China. A rabbit model of mandibular defect was made in 24 male New Zealand white rabbits. The model rats were randomly divided into four groups and received autologous bone, Bio-oss bone meal, β-tricalcium phosphate powder and no implantation (negative control group) in the defective area, respectively. Bone samples, including the defect area and the surrounding normal bone tissue, were taken at 2, 4, 8 weeks postoperatively for SR-μCT examination, followed by histopathological examination, in order to observe the repairing effects of different types of bone implant materials from different angles. The study protocol has been approved by the Ethics Committee of the Fifth Central Hespital of Tianjin in China. The study procedures were completed in accordance with the Guidance Suggestions for the Care and Use of Experimental Animals of China and the guidelines of the National Institutes of Health, USA.
RESULTS AND CONCLUSION: In this study, SR-μCT could be used to observe the bone microstructure and osseointegration with no damage to samples to collect accurate quantitative data, including bone volume, number of bone trabeculae and bone mineral density. Therefore, SR-μCT can fully analyze the biocompatibility of bone implant material in vivo, give insight into the micron-level changes of different types of bone implant materials in the bone defect, thereby providing experimental evidence to improve bone defect healing.

Key words: Tomography, X-Ray Computed, Bone Substitutes, Tissue Engineering

中图分类号: